Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065159

RESUMO

Time-sliced velocity map imaging (VMI) has extensively been applied in photodissociation dynamics studies, thanks to its unique advantages, such as high energy resolution and no requirement of inverse Abel or Hankel transformations. However, its time resolution is generally insufficient for distinguishing adjacent m/z ions with a certain kinetic energy due to the overlapping of time-of-flight distributions. Herein, we have made a novel and convenient switch design for the common ion optics in three-dimensional (3D) VMI. By simply introducing two additional resistors out of the vacuum chamber, the strength ratio of the extraction and acceleration fields is easily changed from 3D VMI to two-dimensional (2D) VMI under optimized conditions, as well as a significant extension of free drift length, leading to a higher time resolution while maintaining the high energy resolution. As a result, 2D and 3D VMI can be quickly switched without breaking the vacuum and replacing the electrostatic plates.

2.
J Phys Chem A ; 127(43): 9013-9021, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875015

RESUMO

Intramolecular hydrogen bonds (H-bonds) are abundant in physicochemical and biological processes. The strength of such interaction is governed by a subtle balance between conformational flexibility and steric effect that are often hard to predict. Herein, using linear aminoalcohols NH2(CH2)nOH (n = 2-5) as a model system, we demonstrated the dependence of intramolecular H-bond on the backbone chain length. With sensitive photoacoustic Raman spectroscopy (PARS), the gas-phase Raman spectra of aminoalcohols were measured in both N-H and O-H stretching regions at 298 and 338 K and explained with the aid of quantum chemistry calculations. For n = 2-4, two conformers corresponding to the O-H···N intramolecular H-bond and free OH were identified, whereas for n = 5, only the free-OH conformer was identified. Compared to free OH, a striking spectral dependence was observed for the intramolecular H-bonded conformer. According to the red shift of the OH-bonded band, the strongest intramolecular H-bond yields in n = 4, but the favorable chain length to form an intramolecular hydrogen bond at room temperature was observed in n = 3, which corresponds to a six-membered-ring in 3-aminopropanol. This is in good agreement with statistical analysis from the Cambridge Structural Database (CSD) that the intramolecular hydrogen bond is preferred when the six-membered ring is formed. Furthermore, combined with the calculated thermodynamic data at the MP2/aug-cc-pVTZ//M062X/6-311++G(d,p) level, the origin of decrease in intramolecular hydrogen-bond formation was ascribed to an unfavorable negative entropy contribution when the backbone chain is further getting longer, which results in the calculated Gibbs free energy optimum changing with increasing temperature from n = 4 (0-200 K) to n = 3 (200-400 K) and to n = 2 (above 400 K). These results will provide new insight into the nature of intramolecular hydrogen bonds at the molecular level and the application of intramolecular hydrogen bonds in rational drug design and supramolecular assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...